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I. Introduction: Definitions and understanding. 

 
Activity 1.1: Definitions: reasoning and algorithms in mathematics 

   

      

View video clips 
Work in groups 
Home work 

 
30 min 

 
Homework.  
 
 

• Find and view video (2-3) about cultural understanding, reasoning and algorithms in 
learning and teaching mathematics. This is the example of video on YouTube: 
https://www.youtube.com/watch?v=XUO59Emi3eo 

• Give examples of video, which were favorite for you. 
• Discuss cultural issues 

 
Video examples 
(Provide the link of media and short description) 

 
 

At school. Analyze social media 
• Provide the description of the following definitions according viewed video (fill the 

table). 
 

Cultural 
understanding 

Etnomathematics Reasoning Algorithms 

(Describe the 
meaning/definition
) 

(Describe the 
meaning / definition) 

(Describe the 
meaning / 
definition) 

(Describe the 
meaning / 
definition) 
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Work in groups.  

 
• Discuss about the viewed video. Share ideas about your favorite video. 
• Compare tables. 
• Reflect on discussion and tables focusing on the following aspects:  

 
ü Do you see any differences? 
ü What is common? 
ü What are the main features of ethnomathematics, reasoning and 

algorithmic thinking in mathematics? Why do think so? 
 

• Do you find the same favorite media as you friend? 
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I. Introduction: Theoretical background. 

 

Activity 1.2: Different reasoning approaches. Based on Seymour Papert’s 
ideas. 

  

Student read 
Group discussion  

60 min 

 
Find information about Seymour Papert in the internet.  
Study following examples of tasks and share yours ideas within group. 
 
Example 1.2.1. Explain and connect words. 
 
Papert 
Piaget 
Turtle 
Logo 
Cognitive model 
Microworlds 
Mathophobia 

Assimilation 
Learning without being taught 
Programming language 
Accommodation 
Mindstorm 
Geometry 
Children, Computers, Powerful Ideas 
Constructionism 
Incubators for powerful ideas 
Constructivism 
Concrete thinking 
Formal thinking 
The fear of Learning 

 
Example 1.2.2. Read text (S. Papert. MINDSTORMS: Children, Computers, and 
Powerful Ideas. Basic Books, Inc., NY, 1980). 
You can download the book for example from website: 
http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf 
 

 
 

TEXT 1 
Mathematicians interested in the nature of number have looked at the 
problem from different standpoints. One approach, associated with the 
formalists, seeks to understand number by setting up axioms to capture it. A 
second approach, associated with Bertrand Russell, seeks to define number 
by reducing it to something more fundamental, for example, logic and set 
theory. Although both of these approaches are valid, important chapters in 
the history of mathematics, neither casts light on the question of why number 
is learnable. But there is a school of mathematics that does do so, although 
this was not its intention.paralleling the way in which each of us once did 
some of our most effective [p.159]. 
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TEXT 2 
[…] A substantial intellectual growth is needed before children develop 
the "conservationist" view of the world. The conservation of volume is 
only one of many conservations they all learn. Another is the 
conservation of numbers. Again, it does not occur to most adults that a 
child must learn that counting a collection of objects in a different order 
should yield the same result. For adults counting is simply a method of 
determining how many objects "there are." The result of the operation 
is an "objective fact" independent of the act of counting. But the 
separation of number from counting (of product from process) rests on 
epistemological presuppositions not only unknown to 
preconservationist children, but alien to their worldview. These 
conservations are only part of a vast structure of "hidden" mathematical 
knowledge that children learn by themselves. In the intuitive geometry 
of the child of four or five, a straight line is not necessarily the shortest 
distance between two points, and walking slowly between two points 
does not necessarily take more time than walking fast. Here, too, it is 
not merely the "item" of knowledge that is missing, but the 
epistemological presupposition underlying the idea of "shortest" as a 
property of the path rather than of the action of traversing it. [p. 41] […] 
The problem of making mathematics "make sense" to the learner 
touches on the more general problem of making a language of "formal 
description" make sense. So before turning to examples of how the 
computer helps give meaning to mathematics, we shall look at several 
examples where the computer helped give meaning to a language of 
formal description in domains of knowledge that people do not usually 
count as mathematics. In our first example the domain is grammar, for 
many people a subject only a little less threatening than math. [p.48] 
[…] She understood the general idea that words (like things) can be 
placed in different groups or sets, and that doing so could work for her. 
She not only "understood" grammar, she changed her relationship to it. 
It was "hers," and during her year with the computer, incidents like this 
helped Jenny change her image of herself. Her performance changed 
too; her previously low to average grades became "straight A's" for her 
remaining years of school. She learned that she could be "a brain" after 
all [p.50]. 
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TEXT 3 
Turtle geometry started with the goal of fitting children. Its primary 
design criterion was to be appropriable. Of course it had to have serious 
mathematical content, but we shall see that appropriability and serious 
mathematic thinking are not at all incompatible. On the contrary: We 
shall end up understanding that some of the most personal knowledge is 
also the most profoundly mathematical. In many ways mathematics~for 
example the mathematics of space and movement and repetitive 
patterns of action-is what comes most naturally to children. It is into this 
mathematics that we sink the tap-root of Turtle geometry. As my 
colleagues and I have worked through these ideas, a number of 
principles have given more structure to the concept of an appropriable 
mathematics. First, there was the continuity principle: The mathematics 
must be continuous with well-established personal knowledge from 
which it can inherit a sense of warmth and value as well as "cognitive" 
competence. Then there was the power principle" It must empower the 
learner to perform personally meaningful projects that could not be done 
without it. Finally there was a principle of cultural resonance: The topic 
must make sense in terms of a larger social context. I have spoken of 
Turtle geometry making sense to children. But it will not truly make sense 
to children unless it is accepted by adults too. A dignified mathematics 
for children cannot be something we permit ourselves to inflict on 
children, like unpleasant medicine, although we see no reason to take it 
ourselves [p. 54]. 



 
 

  

Module 3 
 

Different cultures – different approaches 
to reasoning and algorithms in 

mathematics 

6 
 

 
 

TEXT 4 
Arithmetic is a bad introductory domain for learning heuristic thinking. 
Turtle geometry is an excellent one. By its qualities of ego and body 
syntonicity, the act of learning to make the Turtle draw gives the child a 
model of learning that is very much different from the dissociated one a 
fifth-grade boy, Bill, described as the way to learn multiplication tables 
in school: "You learn stuff like that by making your mind a blank and 
saying it over and over until you know it." Bill spent a considerable 
amount of time on "learning" his tables. The results were poor and, in 
fact, the poor results themselves speak for the accuracy of Bill's 
reporting of his own mental processes in learning. He failed to learn 
because he forced himself out of any relationship to the material~or 
rather, he adopted the worst relationship, dissociation, as a strategy for 
learning. His teachers thought that he "had a poor memory" and had 
even discussed the possibility of brain damage. But Bill had extensive 
knowledge of popular and folk songs, which he had no difficulty 
remembering, perhaps because he was too busy to think about making 
his mind a blank. 
Current theories about the separation of brain functions mightsuggest 
that Bill's "poor memory" was specific to numbers. But the boy could 
easily recount reference numbers, prices, and dates for thousands of 
records. The difference between what he "could" and "could not" learn 
did not depend on the content of the knowledge but on his relationship 
to it. Turtle geometry, by virtue of its connection with rhythm and 
movement and the navigational knowledge needed in everyday life, 
allowed Billy to relate to it more as he did to songs than to 
multiplication tables. His progress was spectacular. Through Turtle 
geometry, mathematical knowledge Billy had previously rejected could 
enter his intellectual world [p.65]. 
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TEXT 5 
Learners in a physics microworld are able to invent their own personal 
sets of assumptions about the microworld and its laws and are able to 
make them come true. They can shape the reality in which they will work 
for the day, they can modify it and build alternatives. This is an effective 
way to learn, paralleling the way in which each of us once did some of 
our most effective learning. Piaget has demonstrated that children learn 
fundamental mathematical ideas by first building their own, very much 
different (for example, preconservationist) mathematics. And children 
learn language by first learning their own ("baby-talk") dialects. So, 
when we think of microworlds as incubators for powerful ideas, we are 
trying to draw upon this effective strategy: We allow learners to learn 
the "official" physics by allowing them the freedom to invent many that 
will work in as many invented worlds. 
[…] Each new idea in Turtle geometry opened new possibilities for 
action and could therefore be experienced as a source of personal 
power. With new commands such as SETVELOCITY and CHANGE 
VELOCITY, learners can set things in motion and produce designs of 
ever-changing shapes and sizes. They now have even more personal 
power and a sense of "owning" dynamics. They can do computer 
animation~there is a new, personal relationship to what they see on 
television or in a pinball gallery. The dynamic visual effects of a TV 
show, an animated cartoon, or a video game now encourage them to 
ask how they could make what they see. This is a different kind of 
question than the one students traditionally answer in their "science 
laboratory." In the traditional laboratory pedagogy, the task posed to 
the children is to establish a given truth. At best, children learn that "this 
is the way the world works." In these dynamic Turtle microworlds, they 
come to a different kind of understanding~a feel for why the world 
works as it does. By trying many different laws of motion, children will 
find that the Newtonian ones are indeed the most economical and 
elegant for moving objects around. [p.126-129] 
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S. Papert. MINDSTORMS: Children, Computers, and Powerful Ideas. Basic Books, Inc. NY, 
1980. 

  

TEXT 6 
Difficulties experienced by children are not usually due to deficiencies in 
their notion of number but in failing to appropriate the relevant 
algorithms. Learning algorithms can be seen as a process of making, 
using, and fixing programs. When one adds multidigit numbers one is in 
fact acting as a computer in carrying through a procedure something like 
the program in Figure 18. 
 

 
 
[p. 152] 
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II. Culture related context: Practical reasoning example.  

 
Activity 2.1: Juggling 

   
Work in groups 

  
60 min 

 
Group discussion.  

• Discuss the method used to juggle and its difficulties. 
• Try to draw/present steps of juggling on the sheet of paper. Compare your paper 

with friend. 

Read the following text from S. Papert. MINDSTORMS (p. 105-112) and 
practice by using scarfs. 
There are many different kinds of juggling. When most people think of juggling, they are 
thinking about a procedure that is called "showers juggling." In showers juggling balls move 
one behind the other in a "circle" passing from left to right at the top and from right to left at 
the bottom (or vice versa). This takes two kinds of throws: a short, low throw to get the balls 
from one hand to the other at the bottom of the "circle" (near the hands), and a long, high 
throw to get the balls to go around the top of the circle.  

Cascade juggling has a simpler struchture. There is no bottom of the circle; balls travel in both 
directions over the upper arc. There is only one kind of toss: a long and high one.  

 

Its simplicity makes it a better route into juggling as well as a better example for our 
argument. Our guiding question is this: Will someone who wishes to learn cascade juggling 
be helped or hindered by a verbal, analytic description of how to do it? The answer is" It all 
depends. It depends on what materials the learner has for making analytic descriptions. We 
use cascade juggling to show how good computational models can help construct "people 
procedures" that improve performance of skills and how reflection on those people 
procedures can help us learn to program and to do mathematics. But, of course, some verbal 
descriptions will confuse more than they will help. Consider, for example, the description: 

1. Start with balls 1 and 2 in the left hand and ball 3 in the right.  
2. Throw ball 1 in a high parabola to the right hand. 
3. When ball 1 is at the vertex throw ball 3 over to the left hand in a similar high 
parabola, but take care to toss ball 3 under the trajectory of ball 1. 
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4. When ball 1 arrives at the right hand and ball 3 is at the vertex, catch ball 1 and throw 
ball 2 in a trajectory under that of ball 3, and so on. 

This description is basically a brute-force straight-line program. It is not a useful description 
for the purpose of learning.  [p. 105-106] […] 
 
[…] we add arrows to indicate a direction and obtain two state descriptions. 
 

  
TOPRIGHT: The ball is at the top and is moving to the right 

 
TOPLEFT: The ball is at the top and is moving to the left 

 
If we assume, reasonably, that the juggler can recognize these two situations, the following 
formalism should be self-explanatory: 

TO KEEP JUGGLING 
WHEN TOPRIGHT TOSSRIGHT 
WHEN TOPLEFT TOSSLEFT 

or even more simply: 
TO KEEP JUGGLING 
WHEN TOPX TOSSX 

which declares that when the state TOPRIGHT occurs, the right hand should initiate a toss 
and when TOPLEFT occurs, the left hand should initiate a toss. A little thought will show that 
this is a complete description: The juggling process will continue in a selfperpetuating way 
since each toss creates a state of the system that triggers the next toss. 
How can this model that turned juggling into a people procedure be applied as a teaching 
strategy? First, note that the model of juggling made several assumptions: 

1. that the learner can perform TOSSRIGHT and TOSSLEFT 
2. that she can recognize the trigger states TOPLEFT and TOPRIGHT 
3. that she can combine these performance abilities according to the definitions of the 

procedure TO KEEP JUGGLING 
Now, we translate our assumptions and our people procedure into a teaching strategy. 
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STEP 1: Verify that the learner can toss. Give her one ball, ask her to toss it over into the other 
hand. This usually happens smoothly, but we will see later that a minor refinement is often 
needed. The spontaneous procedure has a bug. 
 
STEP 2: Verify that the learner can combine tosses. Try with two balls with instructions: 

TO CROSS 
TOPRIGHT 
WHEN TOPRIGHT TOSSLEFT 
END 

This is intended to exchange the balls between left and right hands. 
Although it appears to be a simple combination of TOSSLEFT and TOSSRIGHT, it usually does 
not work immediately. 
 
STEP 3. Look for bugs in the toss procedures. Why doesn't TO CROSS work? Typically we find 
that the learner's ability to toss is not really as good as it seemed in step 1. The most common 
deviation or "bug" in the toss procedure is following the ball with the eyes in doing a toss. 
Since a person has only one pair of eyes, their engagement in the first toss makes the second 
toss nearly impossible and thus usually ends in disaster with the balls on the floor.  
 
STEP 4. Debugging. Assuming that the bug was following the first ball with the eyes, we debug 
by returning our learner to tossing with one ball without following it with her eyes. Most 
learners find (to their amazement) that very little practice is needed to be able to perform a 
toss while fixing the eyes around the expected apex of the parabola made by the flying ball. 
When the single toss is debugged, the learner again tries to combine two tosses. Most often 
this now works, although there may still be another bug to eliminate. 
 
STEP 5. Extension to three balls. Once the learner can smoothly execute the procedure we 
called CROSS, we go on to three balls. To do this begin with two balls in one hand and one in 
the other. Ball 2 is tossed as if executing CROSS, ignoring ball 1. The TOSSRIGHT in CROSS 
brings the three balls into a state that is ready for KEEP JUGGLING. The transition from CROSS 
to KEEP JUGGLING presents a little difficulty for some learners, but this is easily overcome. 
Most people can learn to juggle in less than half an hour by using this strategy. 
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Do you succeed? What have you noticed? 
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II. Culture related context: Steps of reasoning.   

 
Activity 2.2: A string around the circumference of the earth 

   

Student reads 
Students solves 30 min 

 
S. Papert. MINDSTORMS: Children, Computers, and Powerful Ideas. Basic Books, Inc. NY, 
1980, pp.146-149 
 
Analyze the following example. 
 
Imagine a string around the circumference of the earth, which for this purpose we shall 
consider to be a perfectly smooth sphere, four thousand miles in radius. Someone makes a 
proposal to place the string on six-foot-high poles. Obviously this implies that the string will 
have to be longer. A discussion arises about how much longer it would have to be. Most 
people who have been through high school know how to calculate the answer. But before 
doing so or reading on try to guess" Is it about one thousand miles longer, about a hundred, 
or about ten? 

 
The figure shows a string around the earth supported by poles of greatly exaggerated 
height. Call the radius of the earth R and the height of the poles h. The problem is to 
estimate the difference in length between the outer circumference and the true 
circumference. This is easy to calculate from the formula: 

CIRCUMFERENCE = 2𝜋	𝑥	RADIUS 
so the difference must be 

2𝜋	(𝑅 + ℎ) − 2𝜋	𝑅 
 
which is simply 2𝜋ℎ. 
But the challenge here is to "intuit" an approximate answer rather than to "calculate" an 
exact one.  
 
Most people who have the discipline to think before calculating-a discipline that forms part 
of the know-how of debugging one's intuitions-experience a compelling intuitive sense that 
"a lot" of extra string is needed. For some the source of this conviction seems to lie in the 
idea that something is being added all around the twenty-four thousand miles (or so) of the 
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earth's circumference. Others attach it to more abstract considerations of proportionality. 
But whatever the source of the conviction may be it is "incorrect" in anticipating the result of 
the formal calculation, which turns out to be a little less than forty feet. The conflict between 
intuition and calculation is so powerful that the problem has become widely known as a 
teaser. And the conclusion that is often drawn from this conflict is that intuitions are not to 
be trusted. Instead of drawing this conclusion, we shall attempt to engage the reader in a 
dialog in order to identify what needs to be done to alter this intuition.  
As a first step we follow the principle of seeking out a similar problem that might be more 
tractable. And a good general rule for simplification is to look for a linear version. Thus we 
pose the same problem on the assumption of a "square earth." 

 
The string on poles is assumed to be at distance h from the square. Along the edges the string 
is straight. As it goes around the corner it follows a circle of radius h. The straight segments 
of the string have the same length as the edges of the square. The extra length is all at the 
corners, in the four quarter-circle pie slices. The four quarter circles make a whole circle of 
radius h. So the "extra string" is the circumference of this circle, that is to say 2𝜋ℎ.  

 
Increasing the size of the square does not change the quarter-circle pie slices. So the extra 
string needed to raise a string from the ground to height h is the same for a very small 
square earth as for a very large one.  
 
The diagram gives us a geometric way to see that the same amount of extra string is needed 
here as in the case of the circle. This is itself quite startling. But more startling is the fact that 
we can see so directly that the size of the square makes no difference to how much extra 
string is needed. We could have calculated this fact by formula. But doing so would have left 
us in the same difficulty. By "seeing" it geometrically we can bring this case into line with our 
intuitive principle: Extra string is needed only where the earth curves. Obviously no extra 
string is needed to raise a straight line from the ground to a six-foot height.  
Unfortunately, this way of understanding the square case might seem to undermine our 
understanding of the circular case. We have completely understood the square but did so by 
seeing it as being very much different from the circle.  
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But there is another powerful idea that can come to the rescue. This is the idea of 
intermediate cases: When there is a conflict between two cases, look for intermediates, as 
GAL in fact did in constructing a series of intermediate objects between the two one-pound 
balls and one two-pound ball. But what is intermediate between a square and a circle? 

 
In the octagon, too, the "extra string" is all in the pie slices at the corners. If you put them 
together they form a circle of radius h. As in the case of the square, this circle is the same 
whether the octagon is small or big. What works for the square (4-gon) and for the octagon 
(8-gon) works for the 100-gon and for the 1000-gon. 
 
Anyone who has studied calculus or Turtle geometry will have an immediate answer: 
polygons with ore and more sides. So we look at Figure 17, which show strings around a series 
of polygonal earths. We see that the extra string needed remains the same in all these cases 
and, remarkably, we see something that might erode the argument that the circle adds 
something all around. The 1000-gon adds something at many more places than the square, 
in fact two hundred fifty times as many places. But it adds less, in fact one two hundred 
fiftieth at each of them. 
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II E (Extended). Culture related context: Reading and discussion about basic 
ideas of Logo 

 
Activity 2.3: Logo-based ideas 

   
 
 

Student reads 
Work in groups 
Work in computer 
lab 

  
30 + 60 min 

 
S. Papert. MINDSTORMS: Children, Computers, and Powerful Ideas. Basic Books, Inc. NY, 
1980, pp.75-76 
 
Read the text and share ideas in the group. 
 
Consider a child who has already made the Turtle draw a square and a circle and would now 
like to draw a triangle with all three sides equal to 100 Turtle steps. The form of the program 
might be: 

TO TRIANGLE 
REPEAT 3 
FORWARD 100 
RIGHT SOMETHING 
END 

But for the Turtle to draw the figure, the child needs to tell it more. What is the quantity we 
called SOMETHING? For the square we instructed the Turtle to turn 90 degrees at each 
vertex, so that the square program was: 

TO SQUARE 
REPEAT 4 
FORWARD 100 
RIGHT 90 
END 

Now we can see how Polya's precept, "find similarities", and Turtle geometry's procedural 
principle, "play Turtle," can work together. What is the same in the square and the triangle? 
If we play Turtle and "pace out" the trip that we want the Turtle to take, we notice that in 
both cases we start and end at the same point and facing the same direction. That is, we end 
in the state in which we started. And in between we did one complete turn. What is different 
in the two cases is whether our turning was done "in three goes" or "in four goes." The 
mathematical content of this idea is as powerful as it is simple. Priority goes to the notion of 
the total trip--how much do you turn all the way around? 
 
The amazing fact is that all total trips turn the same amount, 360 degrees. The four 90 degrees 
of the square make 360 degrees, and since all the turning happens at the corner the three 
turns in a triangle must each be 360 degrees divided by three. So the quantity we called 
SOMETHING is actually 120 degrees. This is the proposition of "The Total Turtle Trip 
Theorem."  
If a Turtle takes a trip around the boundary of any area and ends up in the state in which it 
started, then the sum of all turns will be 360 degrees.  
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Part and parcel of understanding this is learning a method of using it to solve a well-defined 
class of problems. Thus the child's encounter with this theorem is different in several ways 
from memorizing its Euclidean counterpart: "The sum of the internal angles of a triangle is 
180 degrees." 
First (at least in the context of LOGO computers), the Total Turtle Trip Theorem is more 
powerful: The child can actually use it. Second, it is more general: It applies to squares and 
curves as well as to triangles. Third, it is more intelligible: Its proof is easy to grasp. And it is 
more personal: You can "walk it through," and it is a model for the general habit of relating 
mathematics to personal knowledge. 
We have seen children use the Total Turtle Trip Theorem to draw an equilateral triangle. But 
what is exciting is to watch how the theorem can accompany them from such simple projects 
to far more advanced ones-the flowers in the boxes that are reproduced in the center of the 
book show a project a little way along this path. For what is important when we give children 
a theorem to use is not that they should memorize it. What matters most is that by  growing 
up with a few very powerful theorems one comes to appreciate how certain ideas can be 
used as tools to think with over a lifetime. One learns to enjoy and to respect the power of 
powerful ideas. One learns that the most powerful idea of all is the idea of powerful ideas. 
 
See the video in YouTube: https://youtu.be/4qP09gofv6U 
 
Work in computer lab: 
Use Scratch to practice the drawing of triangle and other shapes. Repeat the same things in 
the other program. Discuss in groups: what have you noticed? 
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III. Problem solving and reasoning: Algorithms.   

 
Activity 3.1: Solving set of algorithmic tasks. 

   

 

Work in groups 
  

60 min 

 
Solve examples of tasks below and fill the following table with correct 
answers. 
 

Task Task answer 

1.  
 
 

2.  
 
 

3.  
 
 

4.  
 
 

5.  
 
 

6.  
 
 

7.  
 
 

8.  
 
 

9.  
 
 

10.  
 
 

 
Compare solutions in groups. Discuss following aspects: 

• An explanation of the solution of the particular task 
• Do you noticed differences, similarities on your and friend solution? 
• What methods were used to get correct answer?  
• How you were interested in task: only find the correct answer, analyze tasks and 

method used to solve particular task? 
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Task examples 
 

1. A BINARY SCALE 
A Beaver scale shows weight both in decimal (left) and binary (right) numbers.  
A fish weights 1100 kg in binary number system. Which weights you need to put on the scale 
plates that you can see the fish’s weight in decimal numbers? 

 
 
 

2. ALIEN RESIDENTS 
Cute creatures live in newly discovered planets. 

 
According to what feature it is possible to assign a planet to the creature? 

 
 

 
3. FEATHERS 

 
Beaver’s feather belt has lost three feathers. Which feathers should be on the belt? 
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4. A CITY STATUE 
A little kangaroo is staying at a hotel in Beaver Town. She follows the directions below 
given by the hotel staff to get to the famous Beaver statue to take some pictures. 
1. From the hotel’s door, immediately turn to the left. 
2. Go straight forward through two intersections. 
3. At the third intersection, turn right. 
4. Go straight forward. At the first intersection, turn left. 
5. Go straight forward. At the first intersection, turn right. 
A little kangaroo found the statue and is taking a picture. 
 
In which hotel is kangaroo staying? 

 
 

5. ROUND DANCE 
Six beavers play a game. Initially each beaver stays in one of the 6 different numbered rings 
(see the figure). At each ring there is a balloon with a number from 1 to 6 indicating a ring 
the beaver has to go next (destination). There are different destinations for the different 
rings. After a signal each beaver moves to the destination. This move is called round. Then 
the second round follows, then the third, and so on until all beavers happen to be on their 
initial places. 
How many rounds will be needed to finish the game? 
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6. DRAW A HOUSE 
Draw a house by holding a pencil against paper sheet (without any lifting) and drawing the 
same line only once: 

 
The picture shows a way from the point A. 
Can you start from the other points? From which one? 
 

7. A BIKER 
A beaver biker is choosing the shortest route from A to Z.  There are only one-way cycle 
paths. She knows a clever approach (an algorithm) how to find the route and put hints on 
sheets of paper at crossings. What is she writing at the moment? Write an integer which 
the biker has counted for the current crossing E. 
 

 
 

8. TWO BACKPACS 
Two beavers are getting ready for a trip. They are packing their gear. 

 
The weight of one backpack cannot exceed 8 kg. How to distribute the things between the 
backpacks, so that the beavers could take as many things as possible? 
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9. BEAUTIFUL TILES 

Robot-beaver is walking on tiles and decorating then with ornaments. He knows these 
commands: 

 
– Advance to next tile; 

 

– Draw a flower; 
 

 
– Repeat any command 3 times, in this case ‘’Draw a flower’’. 

 
Several flowers on the same tile are drawn one next to each other. 
 What is the amount of flowers drawn by a robot, after these commands? 

 
 
 

10. STAINED GLASS 
A robot is decorating the windows with pieces of glass. The pieces can be of three 
different colors: blue, red, or orange. 

 
Eight pieces of glass form the basic pattern. Using several basic patterns, the robot can 
create a nice regular symmetric decoration. 
 

A three column ornament 
consists of 5 fragments. 

A five column ornament 
looks like this: 

  

 
How many square pieces of blue glass will be needed to complete a stained glass 
decoration with seven columns? 
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III. Problem solving and reasoning: Constructionism – a method for building 
knowledge. 

 
Activity 3.2: Orange game 

   

 
 

Work in groups 
  

30 min 

 
Description of activity: http://csunplugged.org/wp-
content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf 
 
Video of activity on YouTube: https://youtu.be/WforXEBMm5k 
 
Practice in groups the orange game. 
 
ORANGE GAME (p. 93) 
 
Materials 
Each student will need: 

• Two oranges or tennis balls labeled with the same letter, or two pieces of fruit 
each (artificial fruit is best) 

• Name tag or sticker showing their letter, or a coloured hat, badge or top to match 
their fruit 

 
Itroduction 

1. Groups of five or more students sit in a circle. 

2. The students are labelled with a letter of the alphabet (using name tags or stickers), or 
each is allocated a colour (perhaps with a hat, or the colour of their cloths). If letters of the 
alphabet are used, there are two oranges with each student’s letter on them, except for one 
student, who only has one corresponding orange to ensure that there is always an empty 
hand. If fruit is used, there are two pieces of fruit for each child e.g. a child with a yellow hat 
might have two bananas, and a child with a green hat may have two green apples, except 
one child has only one piece of fruit. 
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3. Distribute the oranges or fruit randomly to the students in the circle. Each student has 
two pieces, except for one student who has only one. (No student should have their 
corresponding orange or colour of fruit.) 4. The students pass the oranges/fruit around until 
each student gets the one labelled with their letter of the alphabet (or their colour). You 
must follow two rules: 

a) Only one piece of fruit may be held in a hand. 
b) A piece of fruit can only be passed to an empty hand of an immediate neighbour in 

the circle. (A student can pass either of their two oranges to their neighbour.) 
 
Students will quickly find that if they are “greedy” (hold onto their own fruit as soon as they 
get them) then the group might not be able to attain its goal. It may be necessary to 
emphasize that individuals don’t “win” the game, but that the puzzle is solved when 
everyone has the correct fruit. 
 
Follow up Discussion 

• What strategies did the students use to solve the problem? 
• Where in real life have you experienced deadlock? (Some examples might be a traffic 

jam, getting players around bases in baseball, or trying to get a lot of people through 
a doorway at once.) 
 
 

Extension Activities 
Try different configurations such as sitting in a line, or having more than two neighbours 
for some students. Some suggestions are shown here. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


